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Ultrashort X-ray pulses from free-electron laser X-ray sources make it feasible

to conduct small- and wide-angle scattering experiments on biomolecular

samples in solution at sub-picosecond timescales. During these so-called

fluctuation scattering experiments, the absence of rotational averaging, typically

induced by Brownian motion in classic solution-scattering experiments,

increases the information content of the data. In order to perform shape

reconstruction or structure refinement from such data, it is essential to compute

the theoretical profiles from three-dimensional models. Based on the three-

dimensional Zernike polynomial expansion models, a fast method to compute

the theoretical fluctuation scattering profiles has been derived. The theoretical

profiles have been validated against simulated results obtained from 300 000

scattering patterns for several representative biomolecular species.

1. Introduction

The overwhelming majority of known protein structures at the

atomic scale have been determined by X-ray crystallography.

The availability of these high-resolution structural models is

the foundation of a deeper understanding of fundamental

processes in biology (Orengo et al., 1999), and the develop-

ment of new therapeutic drugs (Schneider & Fechner, 2005)

and novel classes of nano-materials (Barth et al., 2005). Owing

to difficulties in obtaining crystals of large macromolecular

complexes, like membrane proteins or large molecular

machines, X-ray crystallography is rarely the technique of

choice for deriving structure information of such biomolecules

or complexes (Miao et al., 2008). Current techniques used to

study large macromolecular complexes, like electron micro-

scopy (Medalia et al., 2002; Frank, 2002), derive structural

information of complexes in non-native environments and do

not easily allow for the investigation of time-dependent large-

scale structural changes. Techniques like small- and wide-angle

X-ray scattering (SAXS/WAXS) are suitable and allow for

time-resolved studies, but have the drawback that the data

have relatively low information content (Volkov & Svergun,

2003). A possible route for increasing the information content

in solution scattering experiments while monitoring the large-

scale structural changes of macromolecular complexes in

aqueous environments is fluctuation X-ray scattering (fXS), a

method proposed by Kam in the late 1970s (Kam, 1977; Kam

et al., 1981). A fluctuation X-ray scattering experiment is

performed by collecting scattering patterns of a dilute sample

of scatterers at exposure times shorter than the time required

for particles to reorient themselves via rotational diffusion.

These experiments are ideally performed on free-electron

lasers such as the Linac Coherent Light Source (LCLS; Emma

et al., 2010), the European X-ray Free Electron Laser (XFEL;

Vartanyants et al., 2007) or the (to be constructed) Next

Generation Light Source (NGLS; Schoenlein, 2011). Under

the aforementioned conditions, the measured scattering

patterns will no longer be angularly isotropic, but will contain

speckles. It can be shown that a large number of these scat-

tering patterns can be used to estimate the average angular

autocorrelation of the scattering pattern of a single particle

(Kam et al., 1981; Saldin et al., 2010, 2011).

Earlier work by Saldin et al. (2009) has shown that the

angular autocorrelations can be used in the determination of

low-resolution structural envelopes in a manner similar to

which SAXS data are used to determine structural envelopes

(Saldin et al., 2009). By parameterizing a macromolecular

envelope with spherical harmonics, a straightforward proce-

dure is obtained that allows for the optimization of real-space

expansion coefficients given observed angular correlations.

Although the spherical-harmonics expansion used to para-

meterize the macromolecular structure has been widely used,

its main drawback is that it cannot properly describe shapes

containing cavities or pores. A more appropriate polynomial

expansion, capable of describing complex shapes not limited

to star-shaped objects, can be obtained by using three-

dimensional Zernike polynomials (Novotni & Klein, 2003;

Mak et al., 2008; Liu, Morris et al., 2012). Three-dimensional

Zernike polynomials are extensions of the well known

two-dimensional Zernike polynomials frequently used in
‡ Current address: Physics Department, Arizona State University, Tempe, AZ
85287, USA.

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=sc5051&bbid=BB27
http://crossmark.crossref.org/dialog/?doi=10.1107/S0108767312029637&domain=pdf&date_stamp=2012-08-15


describing optics (Wang & Silva, 1980) and have similar

properties. A basic introduction to three-dimensional Zernike

polynomials can be found by Canterakis (1999).

Three-dimensional Zernike polynomials are useful tools in

solution scattering because with a relatively low expansion

order (20, for instance) one is able to faithfully reproduce a

macromolecular shape and its associated scattering function.

This fact has lead to novel ways to compute SAXS profiles

(Liu, Morris et al., 2012) and accelerated shape recovery from

SAXS data (unpublished). In this article we report an

economic route of computing the two-point angular auto-

correlations, C2(q, �’), from the Zernike expansion coeffi-

cients. This work is a first step towards ab initio structure

solution from fluctuation scattering data at low to medium

resolution ranges. In a forthcoming paper, details on how to

utilize this method in three-dimensional model reconstruction

will be reported.

2. Methods

The average angular autocorrelation can be extracted from N

experimental patterns, acquired in femtosecond X-ray scat-

tering experiments, via

C2ðq;�’Þ ¼
1

N

X
i

X
’

Iiðq; ’ÞIiðq; ’þ�’Þ; ð1Þ

where Iiðq; ’Þ is the scattering intensity of pattern i at a pixel

position corresponding to reciprocal space point (q; ’). Kam et

al. (1981) have shown that, given a sufficient number of scat-

tering patterns, this autocorrelation will converge to a fixed

value. The expected value of C2ðq;�’Þ can be computed from

the associated molecular structure as outlined below.

2.1. Three-dimensional Zernike polynomial models

The three-dimensional Zernike model is a compact

description of three-dimensional models using convenient

orthogonal polynomials. After scaling down to fit in a unit

sphere, the electron density of a three-dimensional model can

be represented by

�ðrÞ ¼
P1
n¼0

Pn
l¼0

Pl

m¼�l

cnlmRnlðrÞYlmð!rÞ; ð2Þ

in which r is a three-dimensional vector (r; !r). The original

three-dimensional model can be obtained by scaling up the

unit sphere by rmax, the radius of a sphere circumscribing the

model. RnlðrÞ is the three-dimensional Zernike polynomial

radial function, and the orders l and n have the same parity, i.e.

ðn� lÞ is an even number.

The expansion coefficients, cnlm, can be computed via the

following procedure: the three-dimensional model is firstly

scaled down to fit into a unit sphere by dividing rmax to obtain

the scaled density distribution function, �ðrÞ; and then the cnlm

coefficients can be computed utilizing the orthogonality,

cnlm ¼
3

4�

Z
jrj<1

�ðrÞRnlðrÞY
�
lmðrÞ dr: ð3Þ

Novotni & Klein (2003) have derived a more efficient way of

computing the Zernike moments using the geometry

moments, instead of direct integration.

It is worthwhile pointing out that the computation of the

Zernike moments, cnlm, is the time-limiting step. The details of

the implementation can be found in the original papers

(Novotni & Klein, 2003; Mak et al., 2008). In short, the Protein

Data Bank (PDB) models are mapped to three-dimensional

grids to generate a voxelized object, and from which the cnlm

are subsequently calculated. The grid spacing is set to 0.7 Å, so

the number of non-zero voxels is proportional to the number

of atoms. For very large molecular systems, the grid size can

be increased to speed up the computation. This makes the

Zernike approximation advantageous over other methods,

especially when high-resolution data are not required or

available.

Following Liu, Morris et al. (2012) and Appendix A, the

Fourier transform of this model is equal to

AðqÞ ¼ 4�
P1

n

Pn
l

Pþl

m¼�l

i lð�1Þðn�lÞ=2
cnlmY�lmð!qÞbnðqrmaxÞ ð4Þ

with

bnðqrmaxÞ ¼
jnðqrmaxÞ þ jnþ2ðqrmaxÞ

2nþ 3
: ð5Þ

We now aim to expand AðqÞ in shells of fixed q, and only vary

the angles,

Aqð!qÞ ¼ 4�
P1

n

Pn
l

Pþl

m¼�l

i lð�1Þðn�lÞ=2
bnðqrmaxÞcnlmY�lmð!qÞ

¼ 4�
P1

n

Pn
l

Pþl

m¼�l

wnlðqrmaxÞcnlmY�lmð!qÞ; ð6Þ

wnlðqrmaxÞ ¼ i l
ð�1Þðn�lÞ=2

bnðqrmaxÞ: ð7Þ

If we now regroup constants and set the maximum expansion

order to nmax, we obtain

Aqð!qÞ ¼ 4�
Pnmax

l

Pþl

m¼�l

Y�lmð!qÞ
Pnmax

n

wnlðqrmaxÞcnlm ð8Þ

or

Aqð!qÞ ¼ 4�
Pnmax

l

Pþl

m¼�l

almðqrmaxÞY
�
lmð!qÞ

almðqrmaxÞ ¼
Pnmax

n

wnlðqrmaxÞcnlm:

ð9Þ

The outlined route to compute coefficients alm using available

Zernike moments can be seen to depend linearly on expansion

order nmax. This is in contrast to the traditional method (Kam,

1977) when alm is computed directly from the atomic coordi-

nates (Liu, Morris et al., 2012; expression 6) and depends

linearly on the number of atoms Natoms,
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almðqÞ ¼
PNatoms

j¼1

fjðqÞjlðqrjÞY
�
lmð!jÞ: ð10Þ

In the following subsections, the expressions of Kam (1977)

and Saldin et al. (2009) are closely followed in order to provide

the reader with a complete overview of subsequent steps

required to compute fluctuation scattering curves.

2.2. Intensities

The relation between the Zernike coefficients and the

complex expansion coefficients for the structure factor at any

fixed resolution, q, can be utilized to obtain spherical-

harmonics-based expansion coefficients for the intensity at

this fixed resolution,

Iqð!qÞ ¼ A�qð!qÞAqð!qÞ

¼ 16�2
Pnmax

l

Pþl

m¼�l

Pnmax

l0

Pþl0

m0¼�l0
a�l0m0 ðqrmaxÞalmðqrmaxÞ

� Y�lmð!qÞYl0m0 ð!qÞ: ð11Þ

Although the above expression is not overtly complicated, we

need to re-expand it in a spherical-harmonics series,

Iqð!qÞ ¼ 16�2
Pnmax

l

Pþl

m¼�l

IlmðqÞYlmð!qÞ: ð12Þ

The expansion coefficients, IlmðqÞ, can be expressed as a

function of almðqrmaxÞ via a Gaunt series (Gaunt, 1928), usingR
YlmYl0m0Yl00m00 d� ¼ Gmm0m00

ll0 l00 ð13Þ

with

Gmm0m00

ll0 l00 ¼ ð�1Þm ð2l þ 1Þð2l0 þ 1Þð2l00 þ 1Þ=4�½ �
1=2

�
l l0 l00

�m m0 m00

� �
l l0 l00

0 0 0

� �
: ð14Þ

One thus obtains

IlmðqÞ ¼
P

l0

P
l00

P
m0

P
m00

al0m0 ðqrmaxÞal00m00 ðqrmaxÞG
mm0m00

ll0l00 ; ð15Þ

where

l l0 l00

m m0 m00

� �
and

l l0 l00

0 0 0

� �

are Wigner 3j-symbols.

The latter expansion facilitates easy computation of the

autocorrelation (Saldin et al., 2009) as shown in the following

section.

2.3. The expansion of autocorrelations

According to Saldin et al. (2009) and following their nota-

tion, the correlation function, C2, at a given q value can be

expressed as a weighted sum of Legendre polynomials,

C2;qð�’Þ ¼
P

l

Flð�’ÞBlðqÞ; ð16Þ

with

Flð�’Þ ¼
1

4�
Pl cos2 �ðqÞ þ sin2 �ðqÞ cosð�’Þ
� �

;

BlðqÞ ¼
X

m

jIlmðqÞj
2;

ð17Þ

where Plð. . .Þ denotes a Legendre polynomial and

�ðqÞ ¼ �=2� sin�1
ðq=2�Þ: ð18Þ

� is equal to the wavenumber 2�=� with � the wavelength of

the incident radiation. The expansion coefficients BlðqÞ can

thus be computed directly from the Zernike moments by

considering relations (9), (15) and (17).

3. Results

In this section the theoretical fXS profiles calculated using the

three-dimensional Zernike polynomial method are compared

with the results calculated using the spherical-harmonics

approach, as well as the fXS profiles extracted from simulated

scattering patterns of single molecules. After the validation of

the method, we will show the relation between the resolution

and the Zernike expansion order. The computing complexity

and speed will also be discussed.

3.1. Validation

In order to verify the above expressions, scattering patterns

of proteins in random orientations were simulated up to q

values of 0.5 Å�1 as described in Appendix B. Besides model

data generated via expressions (9), (15) and (17), BlðqÞ were

computed via a spherical-harmonics expansion of the inten-

sities (Saldin et al., 2009). Using three different example

proteins, the fXS profiles obtained from three distinct

approaches are compared in Fig. 1. The BlðqÞ curves obtained

with the Zernike expansion are in excellent agreement with

the curves calculated using the spherical-harmonics approach,

revealing the theoretical fXS profiles under ideal conditions

(noise-free with infinitely small pixel size). The agreement

between the Zernike-based method and the data obtained via

numerical simulation is satisfactory at low resolution but

quickly becomes worse as the resolution increases. The

discrepancy between the theoretical fXS profiles and the data

extracted from the simulated diffraction patterns might be due

to the finite resolution of the detectors (see x4).

3.2. Expansion order

The effect of the three-dimensional Zernike expansion

order on the calculated data is shown in Fig. 2. The truncation

effects depicted in Fig. 2 are comparable with those seen when

computing SAXS profiles as described by Liu, Morris et al.

(2012). As described in the previous study, the resolution at

which truncation ripples appear is largely a function of the

expansion order, nmax, and size, Rmax, of the particle owing to

the scale-free nature of the Zernike polynomials (Novotni &

Klein, 2003; Mak et al., 2008; Liu, Morris et al., 2012).
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3.3. Complexity and timing

As discussed elsewhere (Liu, Morris et al., 2012), the

complexity of the Zernike method for computing SAXS data

scales linearly with the number of atoms (N) and is separately

dependent on the number of data points computed (M);

therefore, the computing complexity is OðM þ NÞ. As

mentioned, the time-limiting step is the computation of the

Zernike moments, and the dependence on M is due to the

precomputation of spherical Bessel functions. The resulting

computing complexity can be approximated by OðNÞ, because

the computation of Bessel functions only compromises a small

overhead on the total run time. On the other hand, the

spherical-harmonics-based method depends linearly on the

number of atoms and the number of data points computed,

resulting in a complexity of OðNMÞ. For computing fluctuation

scattering data, both the spherical-harmonics-based method

and the Zernike-based method show a linear dependence on

the number of data points and number of atoms (Fig. 3). The

reason for the linear dependence when computing BlðqÞ

curves using the Zernike method can be seen from (9), in

which a q-dependent weight is computed. As can be seen from

(9), the three-dimensional Zernike moments cnlm need only

be computed once for a given model. In contrast, the

q-dependent expansion coefficients, almðqÞ, as obtained from a

spherical-harmonics expansion [see equation (10)], depends

on the number of atoms. This reduction in numerical

complexity provides a significant time advantage in the

calculation of BlðqÞ coefficients via the Zernike method. These

effects are illustrated in Fig. 3.

4. Discussions and conclusions

The results from Fig. 1 indicate that the proposed route for

computing model fXS data is effective as the curves obtained

via simulation, spherical harmonics and the Zernike-based

method are all in agreement. The main benefit of the proposed

method is the gain in computational efficiency, a prerequisite

for real-time structure refinement or iterative real–reciprocal-

space ab initio structure determination methods.

Although a notable difference between simulated and

calculated data is found, especially at higher q values, the

discrepancy can be attributed to smearing of data owing to

finite pixel size as well as sampling errors and other experi-

mental phenomena.

The timing results indicate that the Zernike-based method

is more efficient than the spherical-harmonics-based method

because a time-consuming step that depends on the number of

atoms (calculating three-dimensional Zernike moments) is

performed only once. For the spherical-harmonics-based

method, a loop over all atoms has to be performed for each

data point, making this method more computationally costly.

This is especially critical when applying a local perturbation

approach for structural reconstruction or refinement, where

only part of the system will be changed at a time. In this case,

since the Zernike moments are a summation of contributions

from all parts, only the perturbed part of the system needs to

research papers

564 Haiguang Liu et al. � Fluctuation scattering profiles Acta Cryst. (2012). A68, 561–567

Figure 1
Comparisons of fluctuation scattering profiles. The fXS profiles are
calculated using three methods: the Zernike-based method (solid curve),
spherical-harmonics approach (open squares) and extracted from
simulations (crosses). For clarity, only the l = 0 and l = 8 curves are
shown as representatives here. Curves depicted are for models (a) 1ee2,
(b) 2lao and (c) 2e2g. The theoretical curves from the Zernike-based
method agree with the spherical-harmonics-based method. In spite of
discrepancies between the simulations results and the theoretical curves,
the main features are preserved. The expansion order nmax was set to 40.



be updated to obtain the fXS profiles

for the newly generated model.

Although this principle applies to the

spherical-harmonics-based method as

well [see equation (10)], the memory

requirements and computational effi-

ciency for the Zernike method are more

favourable.

Furthermore, the proposed Zernike

method can, in principle, be improved

by removing the q dependence. This can

be accomplished by obtaining a series

expansion form of IlmðqÞ that depends

only on the three-dimensional Zernike

moments and rmax, likely along the lines

of work outlined by Pavelcik et al.

(2002). For the SAXS intensity, which is

closely related to B0ðqÞ, this expression

is quite straightforward (Liu, Morris et al., 2012), indicating

that, for higher orders of l, similar simple expressions can be

found. This is beyond the scope of this work.

To conclude, an efficient method based on three-

dimensional Zernike polynomials for fluctuation X-ray scat-

tering profile calculations is presented. The performance and

accuracy are validated against the data obtained from the

spherical-harmonics expansion method and simulation

results. This method provides an opportunity in ab initio

model reconstruction based on the fXS profiles, which are

embedded in the fluctuation X-ray scattering experimental

data.

APPENDIX A
Fourier transform of three-dimensional Zernike radial
functions

Expression (17) of Liu, Morris et al. (2012) provides details of

the Fourier transform of a Zernike polynomial. A formal

proof of the expression (40) as stated by Mathar (2008) could

not be found and is clarified below. It is required to show that

InlðqÞ ¼
R1
0

jlðqrÞRnlðrÞr
2 dr

¼ ð�1Þ½ðn�lÞ=2�
ð2nþ 3Þ1=2jnþ1ðqÞ=q: ð19Þ
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Figure 2
Model resolution dependence on expansion order. Accurate modeling of a higher-resolution fXS profile requires more polynomials, i.e. a higher Zernike
expansion order. The donut-shaped protein (PDB ID: 2e2g) is used as an example to demonstrate the relationships between real-space resolution,
reciprocal-space scattering vector and the maximum expansion order. A higher expansion order needs to be used when truncation errors are observed.

Figure 3
Computing complexity and speed. A computing time comparison for the spherical harmonic and
Zernike-based approaches. Both methods depict a linear computational complexity with respect to
the number of q values in the data set (left) as well as the number of atoms in the model (right). The
speed increase for the Zernike-based method (circles) is approximately a factor of 70 as compared
with the spherical-harmonics-based method (squares).



A concise argument for the validity of (19) follows. We have

from Abramowitz & Stegun (1972), (10.1.1) and (9.1.10),

jlðzÞ ¼ �
3

2

� �
1

2
z

� �lX1
k¼0

ð� 1
4 z2Þ

k

k!�ðkþ l þ 3
2Þ
: ð20Þ

Using this in (19) yields

InlðqÞ ¼ �
3

2

� �
1

2
q

� �l X1
k¼0

ð� 1
4 z2Þ

k

k!�ðkþ l þ 3
2Þ

�
R1
0

r lþ2kþ2 RnlðrÞ dr: ð21Þ

To evaluate the integrals on the right-hand side of (21), we use

the definition of RnlðrÞ, see equation (43) of Mathar (2009),

RnlðrÞ ¼ ð2nþ 3Þ1=2
r lP
ð0;lþ1

2Þ
p ð2r2

� 1Þ; p ¼
1

2
ðn� lÞ;

ð22Þ

where P
ð�;�Þ
j ðxÞ is the general Jacobi polynomial. With the

substitution x = 2r2 � 1, we then obtain

R1
0

r lþ2kþ2RnlðrÞ dr ¼ ð2nþ 3Þ1=2 2�l�k�5
2

�
R1
�1

ð1þ xÞkþlþ1
2P
ð0;lþ1

2Þ
p ðxÞ dx: ð23Þ

Next, we use Rodrigues’ formula in Abramowitz & Stegun

(1972) [equation (21.11.1)], so that

ð1þ xÞlþ
1
2P
ð0;lþ1

2Þ
p ðxÞ ¼

ð�1Þ p

2pp!

d

dx

� �p

ð1� x Þpð1þ xÞ pþlþ1
2

h i
:

ð24Þ

Upon p partial integrations in (23), one obtains

R1
0

r lþ2kþ2RnlðrÞ dr ¼ ð2nþ 3Þ1=2 2�p�l�k�5
2

k!

p!ðk� pÞ!

�
R1
�1

ð1� xÞ
p
ð1þ xÞ

kþlþ1
2 dx; ð25Þ

when k � p, and (25) vanishes when 0 � k � p. The

remaining integral can be expressed in terms of the Beta

integral as in Abramowitz & Stegun (1972) [equation (6.2)].

Using the substitution t = 1
2 ð1þ xÞ, the integral becomes

R1
0

r lþ2kþ2RnlðrÞ dr ¼
1

2
ð2nþ 3Þ1=2 k!�ðkþ l þ 3

2Þ

ðk� pÞ!�ð pþ kþ l þ 5
2Þ

ð26Þ

for k � p, while (26) vanishes for 0 � k � p. Using this in (21)

gives

InlðqÞ ¼
1

2
�

3

2

� �
1

2
q

� �l X1
k¼p

ð� 1
4 q2Þ

k

ðk� pÞ!�ð pþ kþ l þ 5
2Þ
: ð27Þ

Replacing k by ð jþ pÞ, j = 0; 1; . . . ; one obtains

InlðqÞ ¼ ð�1Þ p
1

2
�

3

2

� �
1

2
q

� �lþ2p

� ð2nþ 3Þ1=2
X1
j¼0

ð� 1
4 q2Þ

j

j!�ð jþ l þ 2pþ 5
2Þ
: ð28Þ

Then (19) follows from (20) and the fact that n = l þ 2p.

APPENDIX B
Simulation of scattering data

Scattering data were simulated for molecules in a vacuum,

without any sources of noise. Using atomistic models from the

PDB (http://www.pdb.org/), a single molecule was randomly

rotated and placed in a 1 mm3 box. A full scattering image,

using physically relevant detector parameters that captured q

values up to 0.5 Å�1, was then calculated via direct summa-

tion,

AðqÞ ¼
Xnatoms

i

fiðqÞ expðiq 	 riÞ;

IðqÞ ¼ jAðqÞj2; ð29Þ

where fi and ri are the scattering form factor and coordinate of

atom i, respectively. Pixels in the image were then binned for

specific q and ’ values, and the autocorrelations calculated

using equation (1). Simulations were repeated for 300 000

images to ensure convergence of the autocorrelations.

After the autocorrelations were calculated from the simu-

lated images, a series of Legendre polynomials were used to fit

the autocorrelations according to equation (16). The coeffi-

cients were calculated with the general expression for

expanding any function with a Fourier–Legendre series,

BlðqÞ ¼
2l þ 1

2

Z1

�1

PlðxÞf ðxÞ dx;

x ¼ cos2 �ðqÞ þ sin2 �ðqÞ cosð�’Þ; ð30Þ

where l is the order of the Legendre polynomial, f ðxÞ is the

autocorrelation function, C2ðq;�’Þ, and x is used to map �’
onto [�1, 1] for the Legendre polynomial, Pl . Since the inte-

gral in (30) was evaluated numerically, the limited-memory

Broyden–Fletcher–Goldfarb–Shanno algorithm was used to

minimize the least-squares difference between the simulated

autocorrelation and its series expansion form.

All simulations and calculations were implemented in

Python and C/C++ using the Small Angle Scattering Toolbox

(Liu, Hexemer & Zwart, 2012) as part of the Computational

Crystallography Toolbox (http://cctbx.sourceforge.net/)

(Grosse-Kunstleve et al., 2002). Source code is available upon

request and from http://sastbx.als.lbl.gov/.
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